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Abstract—Dynamics of deformable linear viscoelastic multi-

bodies (beams. plates, membranes and belts with the same boundary 
conditions) coupled by standard light fractional order discrete 
continuous layers is considered using Petrović’s theory of elements 
of mathematical phenomenology. Starting with coupled fractional 
order differential equations in terms of transverse displacements of 
linear elastic beams which are coupled by fractional order discrete 
continuous layers with the corresponding boundary conditions, a 
system of coupled ordinary fractional order differential equations is 
derived in terms of eigen amplitude functions. Independent main 
eigen modes and a set of characteristic numbers of the eigen time 
functions corresponding to eigen amplitude functions are obtained. 
Using Petrović’s theory of mathematical analogy and qualitative 
analogy, properties of the main eigen modes and characteristic 
numbers of the time functions of vibrations of multi-plates as well as 
multi-membranes coupled by fractional order discrete continuous 
layers are studied. Energy analysis in a fractionally damped discrete 
continuous layer is carried out, and a generalized function its energy 
dissipation is defined. 
 

I. INTRODUCTION 
he fundamental ideas of Petrović proposed in his two 
monographs, Elements of Mathematical Phenomenology 

[1] and Phenomenological Mappings [2] published in Serbian 
in 1911 and  1933, respectively, from time to time appear in 
current scientific publications. The sixth, last chapter of [1], is 
entitled Phenomenological analogies, and it describes the 
fundamentals of mathematical analogies and qualitative 
analogy, which will be utilized in the present research for 
studying dynamics of such different hybrid multi-body 
deformable systems  as beams, plates, membranes, and belts 
coupled by fractionally damped discrete continuous layers. 
Each of the considered hybrid systems contains a series of the  
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same type deformable bodies (beams, plates or membranes) 
with the same boundary conditions and coupled by discrete 
continuous layers with linear viscoelastic properties governed 
by the generalized fractional order like Kelvin-Voigt model, 
resulting in the fact that the dynamic behaviour of such a 
hybrid system is described by the corresponding set of coupled 
partial fractional order differential equations. 

 In numerous papers, simple and complex rheological 
elements with elastic, viscoelastic, and plastic properties are 
utilized.  All these elements could be arranged in parallel or in 
series, and/or in different hybrid combinations of these simple 
mass neglected elements. The behaviour of each such model 
could be described by its specific constitutive stress-strain or 
force-displacement relation involving the following constants 
of materials [3-6]:  coefficients of linear elasticity or 
coefficients of linear rigidity,   coefficients of non-linear cubic 
nonlinearity,    relaxation times, retardation times, as well as 
fractional parameters characteristic for fractional order 
viscoelastic models. Values of all these coefficients are 
obtained experimentally. 

II. DISCRETE CONTINUOUS FRACTIONAL ORDER LAYER 
Let us consider a hybrid system of deformable multi-bodies 

coupled by discrete continuous fractionally damped layers. 
The discrete continuous layer represents a set of standard light 
fractional order spring-dashpot elements homogeneously 
distributed between each of two adjacent deformable bodies. 
Each of the standard light fractional order elements within the 
discrete continuous layer is oriented axially in a common 
transversal direction of the deformable body displacements. 
During the motion of deformable bodies in the transversal 
direction each of the standard light fractional order elements 
experiences extension or compression equal to the difference 
between two displacements of the corresponding body points: 

 for plates and membranes 
 ( ) ( ) ( )tyxwtyxwtyxw kkkk ,,,,,, 1,1 −=∆ ++

  
 and for beams and belts 
 ( ) ( ) ( )txwtxwtxw kkkk ,,, 1,1 −=∆ ++ , 

where ( )tyxwk ,,  and  ( )tyxwk ,,1+  are the transversal 
displacements of middle surface points of thin ideal elastic 
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plates (or membranes), x  and y are the coordinates of the 
plate (or membrane)  middle surface points, k  and 1k +  are 
the orders of the plates (or membranes) in a hybrid system, and 

( ),kw x t  and  ( )1 ,kw x t+  are the transversal displacements of 
neutral line points of an ideal elastic prismatic beam (or belt), 
x  is the coordinate along the neutral line of beams (or belts), 
and k  and 1k +  are the orders of the beams (or belts) in a 
hybrid system.  
     Constitutive generalized force – extension relation of a 
fractional order spring-dashpot element according to the 
generalized fractional order like Kelvin-Voigt model could be 
written in the following form:  
 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( )

, 10 , 1

1 , 1, 1

, , , ,

, , , , ,

k k kk k

t k k kk k

Q t c w x y t w x y t

c D w x y t w x y t Q t

α

α
αα

++

+ ++

= − −  

− − = −  

(1) 

 
where [ ]tDα •  is the fractional order differential operator of the 

thα  derivative with respect to time t [3-10] 
 

[ ] [ ]
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[ ]
( )0

1
1

t

t
d dD d
dt dt t

α
α

αα τ
α τ

• •
• = =

Γ − −∫
 ,                 (2) 

 
( )1 αΓ −  is the Euler Gamma function, 0 1α< ≤ , ( )0 , 1k kc +  and 

( ), 1k kcα +  are rigidity coefficients, in so doing ( )0 , 1k kc +  are 

prolonged moduli of elasticity, ( ) ( ), 1 0 , 1k k k kc cα
α τ+ += , and τ is 

the retardation time.  
    At 1=α , the Voigt model (1) with a fractional time-
derivative (2), i.e. the generalized Voigt model, goes over into 
the Voigt model with a conventional time-derivative, i.e. the 
classical Voigt model, since the Riemann-Liouville fractional 
derivative (2) goes over into the conventional first-order 
derivative with respect to time t. At 0=α , the generalized 
Voigt model (1) loses the physical sense (see the paper of the 
Guest Editors of this Special Issue [11], as well as their state-
of-the-art article [4] for details).   

Each fractional order element possesses the potential energy  
               

( ) ( ) ( ) 2
p 10 , 1

1 , , , ,
2 k kk kc w x y t w x y t++= −  E .                  (3) 

Full potential energy pE  of a discrete continuous fractional 
order spring-dashpot layer for any α within the segment 0 1α< ≤  
for plate or membrane takes the form 

( ) ( ) ( ) 2
p p 10 , 1

1 , , , ,
2 k kk k

S S

dS c w x y t w x y t dxdy++= = −  ∫∫ ∫∫E E   (4) 

where S is the plate (or membrane) middle surface area of the 
discrete continuous layer distribution. 

This fractional order element in the dynamic state is no 
conservative element, and thus the dissipation of mechanical 
energy could be expressed in the form [10] 
           

( ) ( ) ( ){ }2

0 1 10 1 , 1
1 , , , ,
2 t k kk kc D w x y t w x y tα

α α< ≤ +< ≤ +Φ = −    .      (5) 

III. MODELS AND PARTIAL FRACTIONAL ORDER DIFFERENTIAL 
EQUATIONS OF MULTI-BODY SYSTEM DYNAMICS 

Three membranes and three beams coupled by discrete continuous 
fractionally damped layers into hybrid deformable multi-body 
systems are presented, respectively, in Figure 1 (a) and (b).  
 
 a
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Figure 1 (a) Three membranes and (b) three beams coupled by 
discrete continuous fractionally damped layers into hybrid 
deformable multi-body systems  

A. Governing partial differential equations of a hybrid 
deformable multi-beam system 

Let us consider transverse motions of a hybrid deformable 
multi-beam system presented in Figure 1 (b). For this purpose, 
we will study a deformable three-beam system in which beams 
are homogeneous prismatic and pure elastic and are coupled 
by fractional order spring-dashpot discrete continuous layers 
described in Sect. II. For all three beams boundary conditions 
are the same.  

Transverse vibrations of this three-beam system are 
decribed by the following three coupled partial fractional order 
differential equations [12]-[15]: 

 

   ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

42
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1 1 1 2 10 1.22 4

2 1 11,2
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A B c w x t w x t

t x
c D w x t w x t c w x t w x t

c D w x t w x t q x t

α
α

α
α

ρ
∂ ∂

= − − − −  ∂ ∂
− − + − +      

+ − −  

         (6) 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 4
3 3

3 3 3 3 20 2.32 4

3 2 32,3

( , ,
, ,

, , , ,t

w x t w x t
A B c w x t w x t

t x
c D w x t w x t q x tα

α

ρ
∂ ∂

= − − − −  ∂ ∂
− − −  

 

 
where k k zkB E I=  ( 3,2,1=k ) are the coefficients of  flexural 
rigidity of the beams.   

For complete description of this hybrid system, it is 
necessary to define and add the corresponding boundary and 
initial conditions. All three beams are of the same length and 
are subjected to the same boundary conditions. This fact  
permits us to suppose that eigen amplitude functions for all 
three beams are described via the one and same form ( )Wm x  
( ∞= ...4,3,2,1m ), and the solution is expected in the following 
form:  
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        ( ) ( )
1

, W ( ) ( )k m k m
m

w x t x T t
∞

=

= ∑ , ( 1,2,3)k = ,             (7)  

and that distributed external excitations along the beam lengths 
are 

    
0 , ,

1

( , ) W ( )sin( )
M

k
k m m km k m

mk

q x t h x t ϑ
ρ =

= Ω +∑  ( 3,2,1=k ) .       (8) 

    Substituting the proposed solution (7) into the system of 
partial fractional order differential equations (6), multiplying 
each equation by ( )Wr x  ( 1,2,3,4...,r = ∞ ), and integrating   
all terms over the length of the beams with due account for the 
orthogonality of the amplitude eigen functions, as a result we 
obtain the set of the ordinary fractional order differential 
equations in terms of eigen time functions ( ) ( )k mT t ( 1,2,3k = ; 

1,2,3,4,....,m = ∞ ) in the following form: 
 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
11 1 0 1,2 1

2 2
1,2 1 0 1,2 2

2
01, 1, 1,1,2 2

( ) ( )

( )

( ) sin ,

mm m m

t m m

t m m mm

T t c k T t a T t

a D T t a T t

a D T t h t

α
α

α
α ϑ

+ +

 + − 
 − = Ω + 



 

 

      

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
22 2 0 1,2 0 2,3 2

2 2 2
1,2 2,3 2 0 1,2 1

2 2
1,2 1 0 2,3 3

2
02, 2 2,2,3 3
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( ) ( )
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α
α α

α
α

α
α ϑ

 + + + + 
   + + − −   

 − − − 
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
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           (9) 
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For solving the infinite number of sets of equations (9) in 

terms of ( ) ( )k mT t ( 1,2,3k = ; 1,2,3,4,....,m = ∞ ), it is necessary to 
find the modal matrix of the system of linear differential 
equations reduced from (9) and the corresponding eigen 
normal coordinates of this system for the case when 

0 , 0k mh = ( 1,2,3k = ; 1,2,3,4,....,m = ∞ ). Introducing the modal 
matrix ( )mR ( 1,2,3,4,....,m = ∞ ) of the linear system of eigen time 
functions of free linear vibrations with the m -th eigen 
amplitude shape in the following form: 

   ( ) ( )
( ){ }( ) ( )

( )( ) 1,2,3

3 3 1,2,3

ks s
m m k m k s

K K
↓ =

→ =
= =R   ( 1,2,3,4,....,m = ∞ )     (10) 

and the corresponding eigen main time coordinates sξ   
 
    ( ){ } ( ) ( ) ( )( ){ }cosm s m s m s m sC tξ ω β= +

,  ( 1,2,3s = ),                (11) 

 
where ( )m sω  ( 1,2,3s = ; 1,2,3,4,....,m = ∞ ) are the eigen circular 

frequencies of the linear part of equations (9), ( )m sC  and ( )m sβ  
( 1,2,3s = ; 1,2,3,4,....,m = ∞ ) are integral constants defined by 
the initial conditions, initial coordinate and velocities values, 

the formula for transformation of the generalized eigen time 
function coordinates of the linear system takes the following 
form: 
       

( ){ } ( ){ } ( ) ( ) ( )( ) ( ) ( ){ }
3

3
1

cos
s

s
k m m k m s m s m s m m s

s
T K C tω β ξ

=

=

= + =∑ R

.     (12) 

  
Considering (12), equations (9) are reduced to the form: 
 
       ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 0tm s m s m s m s m st t D tα

αξ ω ξ ω ξ + + = 


  ,    (13) 

where ( )( ) ( )
2 2

m s m s
α

αω τ ω=  . 
    Generally speaking, equation (13) describes the dynamics of 
a fractional order like Kelvil-Voigt oscillator which have been 
studied by many researchers [3-5,16,17].  
 From equations (13) it follows that this system contains 
infinite numbers of subsets, each of which   involves three 
independent ordinary fractional order differential equations in 
terms of the coordinates ( ) ( )m s tξ  ( 1,2,3s = , 1,2,3,4,....,m = ∞ ), 
which are the eigen main time coordinates of the eigen time 
functions ( )k mT  ( 1,2,3k = , 1,2,3,4,....,m = ∞ ) of one eigen 

amplitude shape function ( )m xW  ( 1,2,3,4,....,m = ∞ ). These 
coordinates as solutions of the corresponding subset of 
fractional order differential equations (13) present eigen 
modes of free vibrations of the beams.  Then,  two sets of the 
characteristic numbers, ( )

2
m sω  and ( )( ) ( )

2 2
nm s m s

α
αω τ ω=  , govern 

two particular solutions of the ordinary fractional order 
differential equations (13) as two complement modes, the 
cosine-like mode 

( ) ( )
( )( ) ( )( )( )cos m s m s

m s t
t

ω α
ξ

+
 
 



  and the sine-like mode 

( ) ( )
( )( ) ( )( )( )sin m s m s

m s t
t

ω α
ξ

+
 
 



 expressed in terms of time series [12, 17, 

19] 
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Then the solution of the ordinary fractional order 

differential equations (13) takes in following form: 

       
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( )

( ) ( ) ( ) ( )
( ) ( )( )( )

cos

sin

0

0

m s m s

m s m s

m s m s m s t

nm s m s t

t t

t

ω α

ω α

ξ ξ ξ

ξ ξ

+

+

 =  
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





,                (16) 

where ( ) ( )0m sξ  and ( ) ( )0m sξ  are the integral constants 
determined by the initial conditions. Considering the proposed 
solution (7) and obtained eigen fractional modes of time 
functions ( ) ( )k mT t  ( 1,2,3k = ; 1,2,3,4,....,m = ∞ ) of the fractional 

order system (9) for 0 , 0k mh = ( 1,2,3k = ; 1,2,3,4,....,m = ∞ ),  is 

INTERNATIONAL JOURNAL OF MECHANICS Volume 8, 2014

ISSN: 1998-4448 347



 

 

possible to writte the following matrix column expression for 
free transverse displacements of three beam neutral axis 
points: 

                  ( ){ } ( ) ( ) ( ){ }
1

, ( )k m m m s
m

w x t W x tξ
∞

=

= ∑ R ,                         

or 

       

( ){ } ( ) ( ) ( ){ } ( ) ( )
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( ) ( ) ( ){ } ( ) ( )
( ) ( )( )( )

cos1

sin1

, ( ) 0

( ) 0

m s m s

m s m s

k m m m s m s tm

m m nm s m s tm

w x t W x t

W x t

ω α

ω α

ξ ξ

ξ ξ

∞

+=

∞

+=

 =  

 +  

∑

∑

R

R






.  (17) 

 From obtained results for the independent fractional order 
differential equations (13) in terms of the independent eigen 
main coordinates ( ) ( )m s tξ , ( 1,2,3s = ; 1,2,3,4,....,m = ∞ ), we can 
identify the corresponding quasi-like analogy between free 
vibrations of harmonic oscillators connected in a conservative 
chain mechanical system and free vibrations of fractional order 
like Kelvin-Voigt oscillators connected in a non-conservative 
chain system with finite number of degrees-of-freedom.  
Similarly is it possible to identify the analogy between the time 
functions in a multi-beam system with beams coupled by ideal 
elastic discrete continuous layers and by fractionally damped 
discrete continuous layers. It could be concluded that there 
exists structural analogy between multi-beam systems and the 
corresponding component vibrations modes. The  same 
conclusions are valid for forced vibrations under harmonic 
external excitation distributed along the length of beams.  
  

B. Governing partial differential equations of a hybrid 
deformable multi-plate system  

Let us consider transverse oscillations of a hybrid 
deformable three-plate system presented in Figure 1 (b), where 
in thin homogeneous prismatic and pure elastic plates are 
coupled by fractionally damped discrete continuous layers 
described in Sect. II. For all three plates boundary conditions 
are the same.  

The transverse vibrations of this three-plate system are 
decribed by the following coupled partial fractional order 
differential equations [13]-[15]: 

 
          ( ) ( ) ( )
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2
3

3 3 3 3 3 20 2.32

3 2 32,3

( , , ) ( , , ) , , , ,

, , , , , , ,t

w x y tA D w x y t c w x y t w x y t
t
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where kD  ( 1,2,3)k =  are the flexural rigidities of the plates. 
For complete description of this hybrid system, it is 

necessary to define and add the corresponding boundary and 
initial conditions. All three plates are of the same contours and 
are subjected to the same boundary conditions. This fact  

permits us to suppose that eigen amplitude functions for all 
three plates could be taken in one and the same form 

( , )nm x yW  ( , 1,2,3,4...n m = ∞ ), and the solution is supposed 
in the following form [15,18]: 

    ( ) ( )
1 1

, , ( , ) ( )k nm k nm
n m

w x y t x y T t
∞ ∞

= =

= ∑∑W  ( 3,2,1=k ),           (19) 

with the distributed external excitation along beam lengths  
 

     0 , ,
1 1

( , , ) ( , )sin( )
M N

k
k nm nm knm k nm

m n

q x y t h x y t ϑ
ρ = =

= Ω +∑∑ W .          (20) 

 Substituting the proposed solution (19) into the system of 
partial fractional order differential equations (18), multiplying 
each equations by ( , )rs x yW  ( , 1,2,3,4...,s r = ∞ ), and 
integrating all terms along the middle surface of the plates with 
due account for the orthogonality conditions of the amplitude 
eigen functions ( , )nm x yW  and ( , )rs x yW , as a result we obtain 
a system of the ordinary fractional order differential equations 
in terms of the eigen time functions ( ) ( )k nmT t ( 1,2,3k = ; 

, 1,2,3,4,....,n m = ∞ ) in the following form: 
 

    
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
11 1 0 1,2 1

2 2
1,2 1 0 1,2 2

2
01, 1, 1,1,2 2

( ) ( )

( )

( ) sin ,

nmnm nm nm

t nm nm

t nm nm nmnm

T t c k T t a T t

a D T t a T t

a D T t h t

α
α

α
α ϑ

+ +

 + − 
 − = Ω + 



 

 

   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
22 2 0 1,2 0 2,3 2

2 2 2
1,2 2,3 2 0 1,2 1

2 2
1,2 1 0 2,3 3

2
02, 2 2,2,3 3

( ) ( ( )

( ) ( )

( ) ( )

( ) sin ,

nmnm nm nm

t nm nm

t nm nm

t nm nm nmnm

T t c k T t a a T t

a a D T t a T t

a D T t a T t

a D T t h t

α
α α

α
α

α
α ϑ

 + + + + 
   + + − −   

 − − − 
 − = Ω + 





 



         (21) 

 

        
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
33 3 0 2,3 0 3,4 3

2 2 2
0 2,3 2 2,3 3,4 3

2
03, 3 3,2,3 2

( ) ( ) ( )

( ) ( )

( ) sin .

nmnm nm nm

tnm nm

t nm nm nmnm

T t c k T t a a T t

a T t a a D T t

a D T t h t

α
α α

α
α ϑ

 + + + 
   − + +   

 − ≈ Ω + 





 



 

 

      The comparison of the set of ordinary fractional order 
differential equations (21) in eigen time functions ( ) ( )k nmT t  
( 1,2,3k = ; , 1,2,3,4,....,n m = ∞ ) with one eigen amplitude 
shape function ( , )nm x yW  written for the three-plate system 
and  the set  of ordinary fractional order differential equations 
(9) in eigen time functions ( ) ( )k mT t  ( 1,2,3k = ; 

1,2,3,4,....,m = ∞ ) with one eigen amplitude shape function  
( )m xW  written for the three-beam system reveals the 

mathematical analogy between the eigen time functions for 
three-plate system ( ) ( )k nmT t  and three-beam system ( ) ( )k mT t . 
There are also another types of analogies such as structural 
analogy, mathematical analogy, and phenomenological 
analogy, resulting in phenomenological mappings between the 
main eigen time coordinates ( ) ( )nm s tξ  ( 1,2,3s = ; 

, 1,2,3,4,....,n m = ∞ ) of there-plate system and the main eigen  
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time coordinates ( ) ( )m s tξ  ( 1,2,3s = ; 1,2,3,4,....,m = ∞ ) of the 
three-beam system, according to which we could obtain for the 
three-plate system the following:  
 

      ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 0tnm s nm s nm s nm s nm st t D tα
αξ ω ξ ω ξ + + = 



  ,     (22) 

 
where ( )

2
nm sω  are the squares of the eigen circular frequencies 

of the corresponding linear part of equations (18) and 

( )( ) ( )
2 2

nm s nm s
α

αω τ ω=  . 
    Thus, once again the problem is reduced to equation (22) 
describing the dynamics of the fractional order like  Kelvin-
Voigt ocsillators.  
 From the obtained system of ordinary fractional order 
differential equations (22) at 0 , 0k nmh =  ( 1,2,3k = ; 

, 1,2,3,4,....,n m = ∞ ), we can conclude that this system contains 
infinite numbers of subsets, each involving three independent 
ordinary fractional order differential equations in terms of the 
coordinates ( ) ( )nm s tξ  ( 1,2,3s = ; , 1,2,3,4,....,n m = ∞ ) which are 
the main eigen time coordinates of the eigen time functions 

( ) ( )k nmT t  ( 1,2,3k = ; , 1,2,3,4,....,n m = ∞ ) with one eigen 

amplitude shape function  ( , )nm x yW  ( , 1,2,3,4,....,n m = ∞ ) 
describing free transverse vibrations of the three-plate system. 
For obtaining necessary solutions for free vibrations of the 
three-plate system, it is possible to use the solutions the for 
three-beam system (14)-(17) substituting there the 
characteristic numbers ( )

2
nm sω  and  ( )( ) ( )

2 2
nm s nm s

α
αω τ ω=   

( 1,2,3s = ; , 1,2,3,....,n m = ∞ ) and the corresponding eigen 
amplitude function ( , )nm x yW   of the three-plate system.  
    Finally let us enumerate the analogous eigen functions and 
characteristic numbers of  three-body systems compiled of  
plates and beams connected with each other by viscoelastic 
layers, the damping features of which are described by the 
fractional order like Kelvin-Voigt model (1): 
 

(1)  ( , )nm x yW  ( , 1,2,3,4,....,n m = ∞ ) are analogous with  
( , )m x yW , 1,2,3,4,....,m = ∞ ;  

 

(2) ( )( )k nmT t  ( 1,2,3k = ; , 1,2,3,4,....,n m = ∞ ) are analogous 

with ( ) ( )k mT t  ( 1,2,3k = ; 1,2,3,4,....,m = ∞ ); 
 

(3) ( ) ( )nm s tξ  ( 1,2,3s = ; , 1,2,3,4,....,n m = ∞ )  are analogous 

with ( ) ( )tsmξ  ( 1,2,3s = ; 1,2,3,4,....,m = ∞ ); 
 

(4) ( )
2
nm sω and ( )( ) ( )

2 2
nm s nm s

α
αω τ ω=   are analogous with ( )

2
m sω  

and ( )( ) ( )
2 2

m s m s
α

αω τ ω=  ; 
 

(5) ( ) ( )
( )( ) ( )( )( )cos nm s nm s

nm s t
t

ω α
ξ

+
 
 



  are analogous with 

( ) ( )
( )( ) ( )( )( )cos m s m s

m s t
t

ω α
ξ

+
 
 



 ; 

 

(6) 
( ) ( )

( )( ) ( )( )( )sin nm s nm s
nm s t

t
ω α

ξ
+

 
 



   are analogous with 

( ) ( )
( )( ) ( )( )( )sin m s m s

m s t
t

ω α
ξ

+
 
 



;  

(7)  ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 0tnm s nm s nm s nm s nm st t D tα
αξ ω ξ ω ξ + + = 



     

( 1,2,3,....,s M= ; , 1,2,3,....,n m = ∞ ) are analogous with 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 0tm s m s m s m s m st t D tα
αξ ω ξ ω ξ + + = 



      

( 1,2,3,....,s M= , 1,2,3,4,....,m = ∞ ). 
 
     It should be noted that similar results and discussion could 
be found in the state-of-the-art article by Rossikhin and 
Shitikova [3], wherein in Sects 4.2.6 and 4.3.2 multi-beam and 
multi-plate systems have been investigated, respectively, 
considering the viscoelastic features of fractionally damped 
layers. See also the papers by Hedrih [13,14] dealing with this 
matter. 
 All above listed analogies valid for free vibratory regimes 
could be extended over forced oscillatory regimes of 
transverse motions of both three-beam and three-plate hybrid 
systems. Thus, characteristic equations for the case of forced 
vibrations could be written in the following form: 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2
1 1 1 1 1

2 3
01, 1, 1, 1 1

2 3
02, 2, 2, 2 2

2 3
03, 3, 3, 3 3

1 2 3
1 1 1

1 2 3
2 2 2

1 2 3
3 3 3

sin

sin

sin

tnm nm nm nm nm

nm nm nm nm nm

nm nm nm nm nm

nm nm nm nm nm

nm nm nm

nm nm nm

nm nm nm

t t D t

h t

h t

h t

α
αξ ω ξ ω ξ

ϑ

ϑ

ϑ

 + + = 

Ω +

Ω +

Ω +
=

3 3

3 3

3 3

3 3 3

3 3 3

3 3 3

K K

K K

K K

K K K

K K K

K K K



 

 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2
2 2 2 2

1 3
01, 1, 1,1 1

1 3
02, 3, 2,2 2

1 3
03, 3, 3,3 3

1 2 3
1 1 1

1 2 3
2 2 2

1 2 3
3 3 3

2

sin

sin

sin

tnm nm nm s nm nm

nm nm nmnm nm

nm nm nmnm nm

nm nm nmnm nm

nm nm nm

nm nm nm

nm nm nm

t t D t

h t

h t

h t

α
αξ ω ξ ω ξ

ϑ

ϑ

ϑ

 + + = 

Ω +

Ω +

Ω +
=

3 3

3 3

3 3

3 3 3

3 3 3

3 3 3

K K

K K

K K

K K K

K K K

K K K



 

(23) 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2
3 3 3 3 3

1 2
01, 1, 1,1 1

1 2
02, 2, 2,2 2

1 2
03, 3, 3,3 3

1 2 3
1 1 1

1 2 3
2 2 2

1 2 3
3 3 3

sin

sin

sin

tnm nm nm nm nm

nm nm nmnm nm

nm nm nmnm nm

nm nm nmnm nm

nm nm nm

nm nm nm

nm nm nm

t t D t

h t

h t

h t

α
αξ ω ξ ω ξ

ϑ

ϑ

ϑ

 + + = 

Ω +

Ω +

Ω +
=

3 3

3 3

3 3

3 3 3

3 3 3

3 3 3

K K

K K

K K

K K K

K K K

K K K



 

 

     
     Note that equations (23) could be solved using the Laplace 
transform method or by the generalized Lagrange method of 
variation of constants [19]. 
 

C. Governing partial differential equations of a hybrid 
deformable multi-membrane system 
 

Let us now consider transversal oscillations of a hybrid 
deformable multi-membrane system presented in Figure 1 (a). 
For this purpose, we will study a hybrid deformable three-
membrane system, wherein membranes are thin homogeneous 
and pure elastic [15] and coupled by fractional order discrete 
continuum layers described in Sect. II.  

Transverse vibrations of such a three-membrane system are 
decribed by the following coupled partial fractional order 
differential equations: 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
21

1 1 1 1 2 10 1.22

2 1 11,2

( , , ) ( , , ) , , , ,

, , , , , , ,t

w x y t c w x y t c w x y t w x y t
t

c D w x y t w x y t q x y tα
α

ρ ρ∂
= ∆ + −  ∂

+ − +  

                   

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
22

2 2 2 2 2 2 10 1.22

2 1 3 21,2 0 2.3

3 2 22,3

( , , ) ( , , ) , , , ,

, , , , , ,

, , , , ,

t

t

w x y tA c w x y t c w x y t w x y t
t

c D w x y t w x y t c w x t w x t

c D w x t w x t q x y t

α
α

α
α

ρ ρ∂
= ∆ − −  ∂

− − + −      

+ − −  

          (24)              

        

    ( ) ( ) ( )

( ) ( ) ( ) ( )

2
23

3 3 3 3 3 20 2.32

3 2 32,3

( , , ) ( , , ) , , , ,

, , , , , , .t

w x y t c w x y t c w x y t w x y t
t
c D w x y t w x y t q x y tα

α

ρ ρ∂
= ∆ − −  ∂

− − −  

 

 
For complete description of this hybrid system, it is 

necessary to define  and add the corresponding boundary and 
initial conditions.  All three membranes are of the same 
dimensions and are subjected to the same boundary conditions. 
This fact  permits us, as it has been done for the previously 
considered systems,  to suppose that eigen amplitude functions 
for all three membranes are of one and the same form 

( , )nm x yW  ( ∞= ...4,3,2,1,mn ), and the solution is supposed in 
the following form [15,18]: 

 

( ) ( )
1 1

, , ( , ) ( )k nm k nm
n m

w x y t x y T t
∞ ∞

= =

= ∑∑W    ( 1,2,3k = )   (25) 

with the distributed external excitation along the membrane 
surfaces  

  0 , ,
1 1

( , , ) ( , )sin( )
M N

k
k nm nm knm k nm

m n

q x y t h W x y t ϑ
ρ = =

= Ω +∑∑ .   (26) 

 
Substituting the proposed solution (25) into the system of 

partial fractional order differential equations (24), multiplying 
each equation by ( , )sr x yW  ( , 1,2,3,4...,s r = ∞ ) with due 
account for  the conditions of orthogonality of the eigen 
amplitude functions, ( , )nm x yW  and ( , )sr x yW , as a result we 
obtain a system of the ordinary fractional order differential 
equations in terms of the eigen time functions ( ) ( )k nmT t  
( 1,2,3k = ; , 1,2,3,4,....,n m = ∞ ) in the forms of (21)  as for the 
case of the three-plate system. Then, all discussion presented 
above concerning the analogies (qualitative, structural and 
mathematical) between the kinetic parameters, characteristic 
numbers, eigen time functions with main eigen time 
coordinates and main eigen modes of free vibrations of the 
three-beam and three-plate systems is valid for the three-
membrane system as well. In doing so it is necessary only to 
pay attention for a proper choice of characteristic values 
defining the geometric and materials parameters of the system 
under consideration.   
  
     D. Discussion 
 

On the basis of the above presented results, it is possible to 
formulate some theorems. Two of them have been already 
published in [20], and now we could formulate three more 
theorems. 

 
Theorem 1: Considered system of the coupled fractional 

order partial differential equations describing transverse 
vibrations of a deformable multi-body system (involving 
beams, or  plates, or membranes) with fractionally damped 
continuous layers is quasi-linear, and the main eigen time 
coordinates of the corresponding system of linear differential 
equations in terms of eigen time functions with one eigen 
amplitude shape are analogous to the main eigen coordinates 
of the ftactional order differential equations describing 
vibrations of fractional order likeKelvin-Voigt oscillators. 

 
Theorem 2: Dynamics of a hybrid system, which contains N  
deformable bodies (beams, plates or membranes) coupled by 
discrete continuous fractionally damped layers with the same 
boundary conditions and with the  displacements ),,( tyxwk  

and ),,(1 tyxwk+  is described by the corresponding system 
of coupled partial fractional order differential equations in 
each eigen amplitude mode  ( ),nm x yW  from the infinite 
number set of the corresponding N -frequency eigen time 

functions ( ) ( ) ( )
( )

( ) ( )
1

s N

k nm nm Nk nm s
s

T t tξ
=

=

= ∑ sK , where  ( ) ( )nm s tξ  

( 1,2,3...,s N= )  are independent main eigen time modes of 
the corresponding subsystem in eigen amplitude mode  
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( )yxnm ,W . These main eigen time modes ( ) ( )nm s tξ   
( 1,2,3...,s N= ) are described by the system of the independent 
ordinary fractional order differential equations of the form: 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 0tnm s nm s nm s nm s nm st t D tα
αξ ω ξ ω ξ + + = 



           (27) 

with two sets of characteristic values, ( )
2
nm sω  and 

( )( ) ( )
2 2

nm s nm s
α

αω τ ω=  , where ( )
2
nm sω  are squared eigen circular 

frequencies of free vibrations and τ  is system’s retardation 
time.  
      Proof of this theorem 2 is evident from Sect. III. 
 
Theorem 3: Generalized forces 

kwQ  and 
1kwQ

+
 of interaction 

of two deformable bodies coupled by a standard discrete 
continuous layer with known kinetic kE  and potential pE  

energies and known generalized function 0 1α< ≤Φ  of the 
fractional order dissipation  of the system energy for the 
displacements ( , , )kw x y t  and 1( , , )kw x y t+  at the points of 
contacts of deformable bodies with the discrete continuous 
layer could be expressed in terms of energy and its fractional 
order dissipation within the discrete continuous fractionally 
damped layer and written in the following forms: 
 

        ( ) ( )

( ) ( )( ) ( )

k k

p 0 1
, ,

, ,, ,

,
, , , ,

k

k

w
kk

w x y t
k t k

dQ
dt w x y tw x y t

t

Q
w x y t D w x y t

α
α

< ≤

∂ ∂
= − −

∂∂ 
∂  ∂ 
∂ ∂Φ

− − =
∂ ∂   

E E

E

      (28) 

        ( ) ( )

( ) ( )( ) ( )

1

1

k k

11

p 0 1
, ,

1 1

, ,, ,

.
, , , ,

k

k

w
kk

w x y t
k t k

dQ
dt w x y tw x y t

t

Q
w x y t D w x y t

α
α

+

+

++

< ≤

+ +

∂ ∂
= − −

∂∂ 
∂  ∂ 
∂ ∂Φ

− − =
∂ ∂   

E E

E

(29) 

 
   Proof of this theorem 3 is evident from Sect. II. 
 

IV. CONCLUSION 
   Transverse free vibrations of a hybrid multi-body system 
involving plates or membranes are investigated on the basic of 
the results obtained for free transverse vibrations of a multi-
beam system.  
    The results obtained in the given paper for the case of free 
transverse vibrations of the systems combined from three 
deformable bodies (beams, plates or membranes) with the 
same contour and boundary conditions, which are coupled via 
viscoelastic layers, the properties of which are described by 
the fractional order derivative and constitutive relation like 
Kelvin-Voigt model, could be easily generalized for the case 
of hybrid systems involving any finite number of elastic 
bodies. 
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